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We propose all-optical neural networks characterized by very high energy efficiency and performance
density of inference. We argue that the use of microcavity exciton polaritons allows one to take advantage
of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlin-
earity without the use of optoelectronic conversion. We propose a design of a realistic neural network and
estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conver-
sion at the input and output of the network, several orders of magnitude below state-of-the-art hardware
implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts
and interferometry or on polariton spin rotations.
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I. INTRODUCTION

The progress in communications, information process-
ing, and mobile technologies resulted in the advent of the
era of big data. This received an incredible burst with the
developments in parallel computing hardware, and in par-
ticular in artificial intelligence and neural networks (NNs)
[1,2]. Practical applications of machine learning quickly
became an important part of the economy, and currently
include, among others: natural language processing, image
and sound recognition, autonomous vehicles, finance, mar-
keting, and research. At the same time, these developments
put a strain on computing systems, which have to pro-
cess data faster and more efficiently than ever before. This
becomes a serious issue as the energy consumption of
information processing and communication systems is set
to surge. It is already a significant part of the global energy
consumption, and is expected to reach over 20% of global
electricity use by 2030 [3], becoming one of the main
bottlenecks of further progress. This problem has been
recognized by the machine-learning community [4–6].

Meanwhile, the increase of performance of CMOS sat-
urates, significantly deviating from Moore’s law [7]. In
recent years, the shift to architectures with many paral-
lel computing units, such as graphical processing units
(GPUs) or tensor processing units (TPUs), has been the
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dominant trend, but this avenue is limited by Amdahl’s law
[8]. In result, much effort has been dedicated to research on
possible alternatives to the CMOS technology for infor-
mation processing [9]. In particular, there have been great
advancements in machine learning with photons, in both
all-optical and optoelectronic systems [10–12]. Photonic
information processing benefits from high speed, paral-
lelization, low communication losses, and high bandwidth.
Fully functional photonic neurons including nonlinear
activation functions were demonstrated [11–14], includ-
ing spiking neurons [15,16], as well as neural networks
[17–28]. Certain networks achieved high performance in
challenging machine-learning tasks, such as image and
video recognition [29–35]. Scalable vector-matrix multi-
plication operations and convolutions, which are at the
core of neural network implementations, were demon-
strated using photons [36–39]. All these remarkable devel-
opments indicate that photonic information processing
is maturing, and may become a serious competitor for
electronics in the near future, as recognized both in the
academia and the industry [40,41].

The most serious issue taming progress in electronic
systems is related to energy consumption and heat gener-
ation, which results in the phenomenon of “dark silicon”
[7,42]. The main source of losses at high data rates is not
the cost of the actual logic operations, but communication
using electronic channels [43]. On the other hand, com-
munication using photons can be almost lossless. For this

2331-7019/21/16(2)/024045(16) 024045-1 © 2021 American Physical Society

https://orcid.org/0000-0001-8830-3302
https://orcid.org/0000-0003-4885-2571
https://orcid.org/0000-0002-4767-5705
https://orcid.org/0000-0002-2058-5320
https://orcid.org/0000-0003-1771-2963
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.16.024045&domain=pdf&date_stamp=2021-08-25
http://dx.doi.org/10.1103/PhysRevApplied.16.024045


M. MATUSZEWSKI et al. PHYS. REV. APPLIED 16, 024045 (2021)

reason, electric wiring has been successively replaced by
photonic waveguides at long and medium distances, and
are now being commercially implemented even at the chip
scale [44]. However, electronics is still necessary for signal
amplification and processing. The drawback of photonics
is the weakness of nonlinearity, or effective interactions
between photons. Nonlinearity is crucial for the implemen-
tation of nontrivial information processing, either in the
form of a transistor or a neuron activation function. All-
optical information processing has been impractical due
to the high intensity of the optical beams required, which
effectively results in high energy cost per operation.

Alternatively, since nonlinearity occurs at very low
energy levels in electronics, optoelectronic conversion can
be used, so that nonlinear transformations are implemented
electronically, and photons are used for communication
or linear operations only. However, there are still seri-
ous issues with the implementation of scalable optoelec-
tronic information processing. Integration of light sources
is difficult, and the spatial scales for efficient electronics
(nanometers) and photonics (micrometers) are incompati-
ble. The energy cost of optoelectronic conversion in logical
elements is typically such that it overcomes any gain from
the use of optics for communication. It is estimated that net
energy-efficiency benefits can only be expected if the spa-
tial extent of photonic modes is reduced to the nanometer
scale [43]. This may be difficult in practice without incur-
ring additional losses, either due to absorption or imperfect
confinement of photons at the subwavelength scale. Since
practical solutions to these issues are yet to be demon-
strated, it is desirable to find an all-optical alternative for
energy-efficient information processing. Such an approach
requires strong optical nonlinearity without optoelectronic
conversion. This would allow for fully exploiting the
intrinsic ultrashort time scales and high energy efficiency
of photonics in complex information-processing tasks that
require nonlinearity.

We recently demonstrated hardware neuromorphic sys-
tems where strong nonlinearity resulted solely from inter-
actions of exciton polaritons, quantum superpositions of
light and matter [30,31,45]. Such superpositions, in the
form of mixed quasiparticles of photons and excitons
[46,47], are characterized by excellent photon-mediated
transport properties and strong exciton-mediated interac-
tions [48,49]. Their unique properties led to the discov-
ery of remarkable phenomena, including nonequilibrium
Bose-Einstein condensation [47,50], superfluidlike states
[51,52], interactions of quantum defects [53–55], lasing
of topological edge states [56,57], as well as demon-
stration of polariton transistors and switches [49,58–62],
gates [31,63], neurons [64,65], simulators [66], and non-
linear phenomena at the femtojoule level [48,49]. In our
proof-of-principle neural network implementations, both
photonic and electronic layers are used, but the latter per-
formed linear operations only. These experiments, based

on reservoir computing [30] and binarized neural networks
[31], achieved accuracy of 93% and 96% in the Modified
National Institute of Standards and Technology (MNIST)
handwritten digit benchmark, respectively. Moreover, the
strong polariton nonlinearity, resulting from Bose-Einstein
condensation, allowed the achievement of energy effi-
ciency of 16 picojoule per synaptic operation (SOP) in an
all-optical binarized neuron [31].

Here, we argue that semiconductor microcavity sys-
tems can be used to construct fully functional, all-optical
neural networks characterized by extremely high energy
efficiency of inference. We show why using polaritonics
in place of standard nonlinear optical phenomena, is the
key to achieving such a performance. Exciton polaritons
can perform information processing that takes advantage
of the properties of both photons and electrons in a seam-
less manner. We propose a design of a polariton-based
neural network in which fast, parallel, and low-loss com-
munication using photons is accompanied by the strong
nonlinearity induced by exciton interactions, without the
need for optoelectronic conversion. We estimate the per-
formance of such a network in the case of resonant exci-
tation, and predict that nonlinear inference at attojoules
per bit energy cost can be achieved, outperforming current
technologies by orders of magnitude. We propose how a
simple network, based on nonlinear binarized nodes, could
be implemented, taking advantage of either the interfer-
ence of photons or polariton spin rotations. We estimate
two key measures of the proposed design—the energy effi-
ciency and performance density. Our estimations indicate
that using currently available optical elements, the network
could reach an energy efficiency of 4 × 1016 SOP s−1 W−1

(synaptic operations per second per watt) and performance
density of 1016 SOP s−1 mm−2 (synaptic operations per
second per millimeter squared), which are higher than the
limits of the current semiconductor technology [67], as
well as other technologies under investigation [68], by
4 and 3 orders of magnitude, respectively. Finally, we
discuss the challenges and limitations of the proposed plat-
form, including those related to optical losses, and indicate
the possible applications where polaritonics may compete
with CMOS electronics.

II. GENERAL ESTIMATES

A. Exciton polaritons

To estimate the theoretical minimum of energy required
to perform a single nonlinear operation using exciton
polaritons, we consider the simple device depicted in
Fig. 1. The optical phase of the output pulse depends on the
input pulse intensity due to nonlinear dynamics of polari-
tons inside the microcavity. We assume that the nonlinear
process is third order, i.e., the phase shift depends linearly
on the intensity, and results from the repulsive interactions
between polaritons mediated by their exciton component
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in out

Epulse φ ~ Epulse

FIG. 1. Simple setup for the consideration of energy effi-
ciency. The microcavity contains exciton-polariton quantum
wells or a nonlinear optical medium. The optical phase shift
of the output pulse depends on the energy of the input pulse.
This nonlinear (i.e., optical-intensity-dependent) transformation
is useful for information processing when phase shifts of the
order of π can be achieved.

[47]. While other processes, including interactions with the
reservoir of weakly coupled excitons, or the reduction of
light-matter coupling strength, can also lead to a similar
nonlinear response, we consider direct polariton-polariton
interactions as the process that is likely to play the most
relevant role at the shortest timescales.

We assume that to implement a useful nonlinear trans-
formation, the phase shift induced by the nonlinearity
should be of the order of π . Such a phase shift can be, for
example, subsequently converted into full-scale amplitude
modulation using a Mach-Zender interferometer. There-
fore, it is enough to construct optical components that turn
on or off transmission through the device depending on
the nonlinear phase shift. However, we do not exclude
the possibility that smaller phase shifts can also be used
for computation. We compare the natural energy scales to
estimate the number of photons necessary to realize such
a phase shift. This leads to the formula ng > �γ where
n is the quantum-well exciton density, g is the exciton-
exciton interaction coefficient, and γ is the polariton decay
rate, which is the inverse of the lifetime of polaritons
in the cavity. Here n ≈ χNphotons/(NQWS), where Nphotons
is the number of photons that are converted into polari-
tons, χ is the exciton Hopfield coefficient, S is the area of
the illuminated surface, and NQW is the number of quan-
tum wells accommodating excitons. To estimate a realistic
lower limit of energy consumption, we consider resonant
excitation configuration, in which polaritons are created
directly by a picosecond laser pulse. Such a configuration
is much more energy efficient than the nonresonant excita-
tion used in the previous experiment [31], since most of the
photons can be converted directly into polaritons. As we
are concerned with order-of-magnitude estimations, for the
time being we neglect the photons reflected or absorbed by
the microcavity or other optical components. More precise
estimates will be presented in Sec. III C.

In the theoretical estimation of energy efficiency we use
realistic microcavity parameters. Following Refs. [69,70]
we use the values of parameters g = 2 μeV μm2, γ =
(270 ps)−1. These parameters correspond to state-of-the-
art GaAs microcavities, but a range of inorganic materials
including CdTe, ZnO, GaN, and perovskites are expected
[71] to be characterized by exciton interaction coefficients
g in the range 2 − 5 μeV μm2. Many of them were used to
observe exciton polaritons at room temperature [72–76].
In this work we assume a room-temperature operation to
avoid the energy cost of cooling. We assume that a sin-
gle quantum well is present in the microcavity, and use
a conservative estimation of the surface area of a single
polariton gate S = 10 μm2. Note that polariton modes as
small as 1 μm2 have been realized experimentally [77],
but structuring light on such a small length scale could be
challenging due to interference effects.

This gives the estimate of the minimum energy of a
single input pulse Epulse = NphotonsEphoton at the level of
3 attojoules (3 × 10−18 J), which corresponds roughly to
12 photons per pulse, for the photon energy Ephoton =
1.6 eV. One may worry that too small a photon number
introduces errors due to quantum fluctuations; these are
discussed in Sec. VII. Since a simple binary neuron (see
Sec. IV) requires four pulses and performs two synap-
tic operations, the energy-efficiency bound is estimated as
1.7 × 1017 SOP s−1 W−1. This can be compared, for exam-
ple, with the energy efficiency of 4 × 1010 SOP s−1 W−1

obtained with the IBM TrueNorth neuromorphic chip [78].

B. Nonlinear optical media

Microcavities can be used to construct nonlinear ele-
ments without the use of exciton polaritons. Instead, any
medium exhibiting third-order nonlinearity can be embed-
ded in a microcavity to realize the same concept. In this
case, the energy required for a single operation can be
estimated from the strength of optical phase modulation,
knowing the parameters n2 (nonlinear Kerr index), n0
(refractive index), and ng (group refractive index). The
third-order nonlinearity results in the intensity-dependent
refractive index change δn = n2I = n2P/S, where P is the
power and S is the surface area. The resulting change of
resonator frequency is δω = −(δn/n)ω as the wavelength
is fixed by the cavity size and the number of antinodes. The
corresponding shift of resonator energy is δE = �δω. The
minimum energy shift required for the operation of a gate
can be estimated as in the case of polaritons, by compar-
ing it to the natural energy scale of the cavity |δE| = �γ .
If this condition is fulfilled, photons can acquire a π phase
when interacting in the microcavity.

Finally, the energy of the input pulse can be estimated
from Epulse = Ptcav, where tcav is the time necessary for
the light to perform a round trip inside the cavity, tcav =
2Lng/c, where L is the length of the cavity. This leads
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to the formula Epulse = 2n0ngγ SL/(n2ωc) for the energy
of the input pulse. We estimate that materials exhibiting
strong and fast nonlinearity, such as silicon or gallium
arsenide semiconductors in the weak coupling regime,
with n2 of the order of 10−17 m2 W−1, would require at
least 10−14 J (10 fJ) per synaptic operation, 4 orders of
magnitude higher than in the case of exciton polaritons. At
the same time, materials that exhibit slow nonlinear pro-
cesses, such as photorefractive media, would not be energy
efficient due to long illumination times required to build up
the nonlinear index change.

C. Optoelectronic approach

Electronic devices are excellent for nonlinear opera-
tions, with energy per bit in a logical gate reaching possibly
the level of 50–100 aJ [43,79]. However, communication
on chip requires charging electrical wires to the level of 1
V, because lower voltage leads to strong leakage current
in transistors. The energy cost of charging communication
lines results in large energy dissipation, of the order of pJ
per bit for floating point operations, memory access, and
even larger cost for off-chip communication.

On the other hand, optoelectronic approach, where non-
linear operations are performed electronically, but commu-
nication is realized with light, is a possible solution that
takes advantages of both methods. However, this requires
optoelectronic conversion for each information bit, which
itself generates pJ energy cost in typical devices [44].
Since the cost of optoelectronic conversion scales with
size, it was suggested that net benefits can be expected if
light modes are confined to volumes at the nanometer scale
[43]. This may be difficult in practice, as the confinement
of light modes to below-wavelength spatial scales is usu-
ally associated with strong losses either due to absorption
by metallic mirrors, or imperfect confinement of dielectric
mirrors.

III. ALL-OPTICAL NEURAL NETWORK

In this section we discuss a possible implementation of
polariton nonlinearity in an all-optical neural network. A
single hidden-layer network of binarized nodes is consid-
ered for its simplicity. Here and in the following, we use
the term “binarized” to describe a neural network with
binary inputs and activations in the hidden layer. While
numerous optical neural networks or machine-learning
systems have been described in the literature, only Refs.
[30,31] considered the use of exciton polaritons.

A. Design

We propose a design of a simple all-optical neural net-
work taking advantage of the polariton nonlinearity. There
are no electrical or optoelectronic elements in the sys-
tem and both inputs and outputs are assumed to take the

form of optical pulses. This makes the proposal distinct
from previous experimental implementations [30,31], and
is crucial for the energy efficiency of the network. More-
over, all elements of the network such as beam splitters,
mirrors, lenses, light filters are passive and do not require
an external power supply. In contrast to experiments real-
ized in exciton-polariton systems [30,31], our design does
not involve optoelectronic conversion or electronic infor-
mation processing at any element within the network.
Although we consider inputs and outputs as optical, we
appreciate that they may have to be converted from or
to electronic signals for compatibility with other systems.
We account for the corresponding additional energy con-
sumption in Sec. III C. The proposed network is one of
the simplest possible applications of polaritons for opti-
cal information processing, but not the only one possible,
and many other configurations can be envisaged. We dis-
cuss some of the possible extensions in Sec. III F. The aim
of this work is to propose a simple design to indicate the
potential of polaritonics for energy-efficient computing.

We consider a large network of all-optical binarized
neurons where inputs and activations in the hidden layer
are two level. Such a network can be used for complex
classification tasks [31,80,81]. The logical structure of
the network is analogous to the one introduced in Ref.
[31] and shown schematically in Fig. 2. In Ref. [31], we
experimentally realized a single binarized neuron using
a polariton microcavity excited with a nonresonant laser
pulse, achieving 16 pJ per bit energy efficiency. Here, we
propose to use resonant excitation to achieve the same
functionality, but at much higher energy efficiency, since
resonant pumping selectively excites polaritons and allows
most of the input photons to be converted to polaritons.
The activation function of neurons is such that they effec-
tively perform XOR logical gate operations. In the case
of information encoding with light intensity, the inten-
sity levels corresponding to “0” and “1” bits can be
defined arbitrarily and differently at the input and output
of the gates, as long as they are consistent between the
gates. We consider a single hidden-layer network, com-
posed of Nnodes polaritonic gates. The linear classification
at the output layer is realized by an all-optical vector-
matrix multiplier. Optical vector-matrix multiplication has
been realized in many experiments [17,19,20,27,29,38,82],
and recently multiplication of 3000 variables has been
demonstrated [83].

The input information is encoded in space, and all input
pulses are assumed to arrive at the same time. In the partic-
ular example considered, pixels from the MNIST dataset
are binarized, and assigned to elements of two equally
sized arrays. We assign random pairs of pixels to the ele-
ments of the two arrays, as depicted in Fig. 2. The same
pairs of pixel positions denoted by p1 . . . pn are assigned to
the same array elements 1 . . . n for all digits. This allows
the network to detect nontrivial correlations between
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(a)

(b)

FIG. 2. (a) Conceptual scheme of a
single hidden-layer network and (b) a
possible all-optical implementation. The
raw input (schematically depicted as a
handwritten digit) is spatially encoded
with light pulses, which are assumed to
arrive simultaneously. It is split into two
parts visualized with the dotted arrays,
which encode the two inputs of multiple
XOR gates. Each of the gates corresponds
to a single pixel of the array. The trans-
mitted intensity contains the result of the
XOR gates if one of the methods of Sec.
IV is used. This is subsequently split into
M copies, which correspond to the num-
ber of classes. The weight banks imple-
ment linear classification of the result
in the Nnodes-dimensional feature space.
Light intensity at the output measured by
the detectors contains information about
the probability that the sample belongs
to a certain class.

distant pixels even in the single-layer XOR network. The
above stage does not require any nonlinear operation and
can be implemented all optically, for example, using a
diffractive optical element (DOE) or a three-dimensional
laser-written waveguide array. The arrays of pulses, form-
ing the two binary inputs of the gates, are directed at the
same area of the sample, creating an array of Nnodes non-
linear nodes. The optical output (light transmission) from
each of the nodes corresponds to the result of an XOR oper-
ation. To obtain an XOR activation function of the nodes,
we propose to use one of the methods described in Sec. IV.
Further on, a vector-matrix multiplication is realized with
linear optical elements. Precisely, each of the Nnodes pulses,
which constitute output of the nodes, is split into M copies
(for example, using a diffractive optical element), where
M is the number of classes. These copies are directed at
an Nnodes × M optical filter array, which applies synaptic
weights by selectively attenuating intensities of the pulses.
The resulting weighted pulses are combined into M out-
puts. The output of the device consists of M pulses, which
are the result of the multiplication. The optical vector-
matrix multiplication has been realized both in the case of
coherent and incoherent light [17,19,20,27,29,38,82,83].
The intensity at the output is related to the probability that
the input sample belongs to the particular class. This inten-
sity can be measured by a detector such as a photodiode to
convert it to an electrical signal.

The optical elements necessary to build the above
system are readily available. The input can be cre-
ated using a laser generating picosecond optical pulses,
and input information can be encoded with arrays of

micrometer-sized optoelectronic modulators [84–86]. The
multi-beam-splitter used for the vector-matrix multipli-
cation can be either implemented with an appropriately
shaped diffractive optical element or a system of standard
beam splitters. Finally, arrays of sensitive photodetectors
can be used to detect the output signals [84]. The opti-
cal weight banks can be implemented with any form of
a tunable semitransparent filter, for example, using pro-
grammable nanophotonics [10,36], a liquid crystal array,
or a phase-change material array [25].

B. Numerical results

We simulate the proposed system, assuming that
Nnodes = 8000 gates are characterized by the same level of
inaccuracy in terms of shot-to-shot variance of intensity as
in the experiment [31]. Despite the relatively large amount
of experimental noise in that experiment, we find that such
a network is able to recognize MNIST handwritten digits
with 95.9% accuracy, only 0.1% lower than the network of
ideal XOR gates. This is close to the 96% accuracy on the
MNIST task of the state of the art for hardware neuromor-
phic implementations [31,87,88], although sophisticated
software simulations of neural networks can reach much
higher accuracy of recognition, at the cost of much longer
operation time and higher energy consumption [89].

C. Total energy consumption

The estimations of energy efficiency presented in Sec.
II have to be treated as theoretical lower bounds for the
energy efficiency of an ideal system. Here, we attempt to
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take into account all sources of energy loss and estimate
more realistic energy efficiency including all necessary
optical and optoelectronic components. Until now we have
only taken into account the optical energy of input pulses.
However, most of the information in the modern world is
carried electronically, with the exception of optical fiber
connections. In the case when information is encoded elec-
tronically, we expect that the conversion of electronic to
optical signal can lead to a significant overhead in terms
of energy efficiency and speed. In particular, commer-
cial ultrashort pulse lasers reach wall-plug efficiencies, or
conversion ratio of electric to optical energy, above 10%.

We present a calculation of the total energy consump-
tion of a complete network, taking into account losses
occurring at all elements of the system, i.e., laser source,
modulators, microcavity, weight banks, and photodetec-
tors. We consider two cases: (A) an “idealized” large scale
system, with parameters corresponding to state-of-the-art
optical elements, and (B) a proof-of-principle system with
a relatively small number of nodes and accessible optical
elements.

The average energy per synaptic operation in a bina-
rized network can be calculated as Eop = Etotal/(2Nnodes),
where Etotal is the total energy consumed by the system and
Nnodes is the number of binary nodes (gates) in the hidden
layer, each gate with two synaptic inputs. The total energy
consumption for a complete neural network is

Etotal = Esource + Emodulators + Edetectors, (1)

where Emodulators is the net electrical energy required to sup-
ply optoelectronic modulators that encode input data, and
Edetectors is the energy required to supply photodetectors at
the output layer. In the proposed architecture, all data is
injected, processed, and read out in parallel. The number
of modulators is equal to the number of input bits, and
the number of photodetectors is equal to the number of
classes. The microcavity and the weight bank are passive
elements, and do not appear directly in the formula above,
but the optical energy loss occurring in these elements will
influence the required laser power.

The energy of the source laser will be bounded from
below by two main factors. It has to be high enough for the
operation of all the polariton nodes in the hidden layer, and
on the other hand, provide sufficiently high optical energy
for the photodetectors in the output layer. Of the two con-
straints, the first one will be typically the more strict one,
due to the large number of nodes and much lower number
of classes measured by photodetectors in a standard net-
work. We estimate the electrical energy required to supply
the laser as

Esource ≥ Enodes

ηL
= 2NnodesEpulse

ηCηL
, (2)

where Enodes is the optical energy required to supply all
the polariton nodes, ηL < 1 is the wall-plug efficiency of
the laser, Epulse is the minimum energy per pulse as esti-
mated in Sec. II, ηC < 1 is the microcavity transmission
coefficient (ratio of ouput to input energy transmitted for
“1” output logic value). We overestimate the energy by
assuming that the energy of polaritons interacting in the
microcavity is equal to the energy of pulses transmit-
ted through the microcavity in the “1” output state. We
neglect losses at optical elements such as beam splitters
and mirrors, as they will contribute marginally to the final
efficiency. We can estimate the total energy per operation
as

Eop ≥ Epulse

ηCηL
+ Nmod

Nnodes
Emod + Ndet

Nnodes
Edet, (3)

where Nmod is the number of modulators, Emod is the energy
cost per bit for a single modulator, Ndet is the number of
detectors, and Edet the energy cost per bit for a single detec-
tor. The above formula describes the fact that if a single
bit of information is shared as input by many nodes in
the hidden layer, which is a typical situation in neural net-
works, the cost of the input optoelectronic conversion will
be divided between all the nodes that use this bit of infor-
mation. This can reduce the energy cost of generating an
input pulse for a particular hidden node by orders of mag-
nitude with respect to the energy cost of the optoelectronic
switch. Similarly, the energy of detectors per operation will
be proportionally reduced.

The conversion of information from electronic to opti-
cal signal can be realized with ultraefficient modulators,
which reach energy efficiency of several femtojoules per
bit [84,85]. Polariton spin switches were also recently
demonstrated to achieve energy efficiency at the femto-
joule level [49]. The efficiency of photodetectors has also
reached very high (femtojoule) levels [84]. The number of
photodetectors Ndet may be very low. For example, if the
task of the network is to distinguish between two classes
of objects, only two photodetectors will be necessary, and
consequently their share in the total energy budget will be
negligible.

A single laser pulse can be efficiently redistributed
among inputs. It can be split with DOEs or beam splitters
into multiple copies, and used to generate multiple bits of
information. A single pulse can even be split and redirected
into many devices if its energy is high enough to power
many of them, so the energy of a single laser pulse should
not be treated as the bound for efficiency of a network.
Likewise, if the number of classes is large, sensor arrays
incorporating many elements may be used to detect thou-
sands of optical outputs simultaneously, which can make
the optoelectronic conversion more efficient.

In Table I we show detailed estimations for two cases,
corresponding to an “idealized” case A with parameters
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TABLE I. Parameters of the two devices considered in the text
and the total energy cost per synaptic operation.

Case A Case B

Ninputs 10 000 10
Noutputs 10 000 2
Nnodes 106 100
Surface area of a single node 1 μm2 10 μm2

Polariton lifetime γ −1 100 ps 1 ps
Cavity transmission coefficient ηC 0.9 0.1
Laser wall-plug efficiency ηL 0.2 0.1
Emodulator, Edetector 1 fJ 1 pJ
Energy cost per operation Eop 24 aJ 200 fJ
Energy efficiency (SOP s−1 W−1) 4 × 1016 5 × 1012

of state-of-the-art components and microcavities, used to
solve a complicated machine-learning task (such as Ima-
geNet image recognition) and a “proof-of-principle” case
B with parameters closer to off-the-shelf optical compo-
nents and not yet very optimized microcavities in which
room-temperature polaritons have been already observed
[72,73,76]. We consider polaritons with realistic interac-
tion constant [71] g = 3 μeVμm2. In the idealized case
A, we assume the energy cost of modulators and pho-
todetectors to be of the order of 1 fJ per pulse as in
Ref. [84], cavity polariton lifetime 100 ps and transmis-
sion coefficient of 90% (see Sec. V) and 20% wall-plug
efficiency of the laser. A large-scale neural network with
a million nodes, 10 000 inputs and 10 000 output classes
is estimated to reach energy efficiency of Eop = 24 aJ
per synaptic operation. In the “proof-of-principle” case
B, we assume the energy cost of modulators and detec-
tors at 1 pJ, 10% laser wall-plug efficiency, 10% cavity
transmission coefficient, and 1-ps polariton lifetime. A
simple network with ten inputs, 100 nodes, and two output
classes achieves efficiency of Eop = 200 fJ per operation,
which is 2 orders of magnitude below electronic neuro-
morphic realizations [78] and 1 order of magnitude below
the state-of-the-art specialized electronic neural network
accelerator [90].

For completness, we check if the output contains enough
optical energy for photodetectors. A commercial pho-
todetector characterized by noise equivalent power of
6 pW/

√
Hz, is capable of detecting a signal of a 130-nW

optical power within a 200-MHz bandwidth at a signal to
noise ratio equal to 1. This corresponds to the required
optical energy of 650 aJ per sample in each photodetec-
tor. Considering the high ratio of the number of optical
nodes to the number of detectors, we conclude that the
output contains enough optical energy in both case A and
case B. However, in the case of tasks that require a high
bit depth, such as regression, the photodetector sensitivity
may become the most relevant limiting factor of energy
efficiency.

D. Comparison with other systems
We first compare the inference efficiency of our network

and non-neuromorphic systems that implement software
simulations of neural networks. We consider the most
energy-efficient supercomputer from the Green500 list,
which performs a single floating-point operation (FLOP)
operation at the cost of approximately 60 pJ. We assume
that in a computer simulation of an artificial neural net-
work a single operation roughly corresponds to a single
synaptic event, such as accumulation of a single weighted
input, 1 FLOP ≈ 1 SOP. This gives the energy effi-
ciency of 1.7 × 1010 OP s−1 W−1 (operations per second
per watt). This estimation does not take into account the
energy cost of external memory access, which is crucial
in neural network simulations and can be much higher
than the cost of the computation itself. Memory access
is a bottleneck in CMOS neural network implementations
[67] with the minimum cost per bit at the level of 10
pJ. The efficiency of 1013 OP s−1 W−1 was reported for
the state-of-the-art energy-optimized neural network accel-
erator [91], but such a high efficiency was reported for
convolutional layers of the network only, which are char-
acterized by a relatively small number of external memory
access operations. In contrast, in our neuromorphic design
the cost of memory access is zero, as there is no need to
store the state of the system in external memory during
computation. Finally, we mention that off-the-shelf GPU
systems [5] can reach the energy efficiency at the level of
109 OP s−1 W−1.

In some other works [35,88], efficiency of hardware
neural networks was determined by estimating the num-
ber of FLOPs required to simulate the network rather than
comparing the number of SOPs. Such an approach can
give estimates orders of magnitude higher but here we
choose to take a more conservative approach by focusing
on the number of achievable SOPs. In the case of a dis-
ordered dopant atom network [88], it was suggested that
a theoretical efficiency limit of 1013 SOP s−1 W−1 could
be achieved [93], but this estimation does not account
for the cost of the output signal thresholding and addi-
tional processing of the output, which have to be per-
formed electronically in this case. The comparison with
other neuromorphic and non-neuromorphic systems is pre-
sented in Fig. 3, which also indicates the efficiency of our
recent experimental implementation of a network based
on a binarized polariton node with nonresonant pump-
ing [31]. According to this comparison, we estimate that
an exciton polariton network has the potential to out-
perform other solutions by orders of magnitude. In the
above comparison we do not include estimations made
for optical systems that perform linear operations (in the
function of inputs), such as vector-matrix multiplication
[32,35–39,94], since such systems alone are not able to
efficiently perform complex machine-learning tasks that
require nonlinearity.

024045-7



M. MATUSZEWSKI et al. PHYS. REV. APPLIED 16, 024045 (2021)

FIG. 3. Comparison of energy-efficiency and performance-
density estimates of polariton systems (red dots) and other sys-
tems [25,31,78,87,90–92]. Gray points correspond to systems
for which estimates of only a certain part of the network is
provided [87,91], or the implementation is partly realized by soft-
ware [87,92]. The orange dot corresponds to the experiment with
nonresonantly pumped polaritons [31]. The dashed line is the
single-photon quantum limit for optics.

E. Footprint and performance density

To estimate footprint, we consider the minimal physical
size of optical weight banks that encode synaptic weights.
The size of microcavity neurons is comparable to the size
of weight banks, but their number is smaller. The size
is limited by the optical wavelength and typically can-
not be decreased below micrometer level. We cautiously
assume the size of 10 μm2 for both the optical weight and
optical node. Each weight can be realized with a semi-
transparent filter, either embedded within a spatial light
modulator array, or even with a nonadjustable filter such
as a patterned glass surface, if the weights can be set at the
fabrication stage.

While this size is much larger than the size of an elec-
tronic transistor, it is unlikely to be the main limiting factor
for the footprint. One million polariton neurons or opti-
cal weights can be implemented on a 10 mm2 area, which
is comparable to the density in a neuromorphic CMOS
architecture [78]. The number of parameters in the lead-
ing artificial neural networks participating in the ImageNet
competition [67] is of the order of 108. Such a number of
parameters would require an optical weight bank surface
of a few cm2.

The most relevant performance measure is the perfor-
mance density, which is the number of operations that can
be performed per surface area per time [67]. The practi-
cal maximum rate of incident pulses in a polariton system
can be estimated to be of the order 1/(100 ps). After inject-
ing the input pulses, a typical polariton system needs the
“cooling-off period” of the order of 100 ps to completely

recover to the original state, so that the response of the
cavity is not affected by the previous pulses [31]. This rate
is given by the lifetime of reservoir excitons, or unwanted
excitations in the quantum well, and may strongly depend
on the material used. Such excitations occur even in the
case of resonant excitation. Here, we assume that the cavity
polariton lifetime is shorter than 100 ps. The resulting per-
formance density is orders of magnitude higher than in the
leading CMOS systems [67]. Figure 3 presents comparison
of performance density with respect to other systems.

However, the performance density does not necessar-
ily tell the full story. It is also necessary to consider the
aspect of heat generation in the calculation of footprint. In
electronic devices, due to heat generation, it is difficult to
implement multilayer structure in three-dimensional chips.
One of the dimensions is sacrificed for a heat drain, and it
is the reason why performance density is measured in oper-
ations per surface and not per volume. Hence, calculation
of footprint should not be considered without the consider-
ation of energy dissipation, which is also here the ultimate
limiting factor. In the case of a system with much lower
energy loss but larger surface area, it is possible to consider
multilayer wiring, exploiting the third dimension, which is
typically occupied by a heat sink. For example, a physical
multilayer network can be considered, where each layer is
placed on top of the previous one. In the following section
we discuss the possible integration of the proposed system
inside an optical chip.

F. Extensions and generalizations

We consider several possible extensions of the pro-
posed design. The system depicted in Fig. 2 is based on
free-space optics, but an integrated version is required
for a portable device. We note that the idea behind free-
space optics does not necessarily imply propagation in
free space. The same principles can be applied to design
an integrated system, where light propagates in an opti-
cal medium, such as glass or a transparent semiconductor.
In fact, the most common integrated devices that rely
on free-space optics are mobile phone cameras. Millime-
ter sized camera objectives are used together with inte-
grated semiconductor arrays, where each optical sensor
is micrometer-sized. Analogously, it is possible to design
portable neural networks based on micrometer-sized nodes
and focal lengths of the order of millimeters. Figure 4
illustrates the possible geometry of an integrated polariton
neural network. A device relying on a similar concept has
been demonstrated in Ref. [82]. Propagation is in this case
along the cavity plane and lenses are replaced by diffrac-
tive optical elements, which can be designed to precisely
control light paths.

An alternative to free-space propagation is the use of
integrated optical waveguides [25,36]. Waveguide systems
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FIG. 4. Scheme of a possible integrated version of the free-
space system. The subsequent layers of the system are arranged
side by side in the plane of a planar waveguide. Elements such
as lenses and beam splitters can be implemented with diffractive
optical elements.

can be implemented in a compatible semiconductor plat-
form, and can be used not only to transport light, but also
to build efficient devices for linear operations, such as con-
volutions or vector-matrix multiplication [36,37]. It is also
possible to consider a hybrid architecture where light prop-
agation is partly based on free-space optics and partly on
light confinement in waveguides. Waveguide systems have
two potential drawbacks: they suffer from photon losses,
in particular at waveguide bends, and require a separate
waveguide for each optical path. On the other hand, free-
space connectivity can be almost loss free, and allows
arbitrary intersection of optical paths in a linear medium,
which can greatly improve data bandwidth [43,95].

Another interesting possible extension is the use of
holography for encoding synaptic weights [18]. In this
case, data can be efficiently stored in a three-dimensional,
rather than two-dimensional, weight bank. This can
improve memory capacity significantly, but on the other
hand, writing and retrieving information requires compli-
cated optical systems.

A straightforward generalization of our design is to use
neurons with analog, rather than binary, inputs and outputs.
In this work we choose the simple XOR gate as an example
of a neuron that already allows complex machine-learning
tasks to be performed. From the point of view of machine
learning, the XOR gate, in contrast to OR, AND gates, is
itself a classification task that requires nonlinearity to be
solved [31]. Moreover, because it is a sufficiently nonlin-
ear function, it can be used as a basic building block for
the construction of more complex networks [31,80,81]. In
the case of analog neurons, a similar condition exists. The
activation function has to be strongly nonlinear, with a neg-
ative differential response [31], in order to be useful for the
efficient solution of complex machine-learning problems.
Optical weights may also modify phases of optical pulses
rather than intensities, which can reduce optical losses and
increase the available parameter space.

An extension to a multilayer system is possible, thanks
to the resonant character of the input, which means that
input and output pulses have the same optical frequencies.

In this case, multiple weight banks apply the synaptic con-
nections between neurons in subsequent layers, and each
neuron layer can be implemented with a separate micro-
cavity. On the other hand, in this case losses become a
more serious issue and may accumulate exponentially as
light is transmitted through a number of layers. In Sec.
V we show how an appropriate design of a microcavity
can circumvent losses to a large extent. Nevertheless, in
the case of a large number of layers, some kind of pulse
regeneration method will likely be required. Note that dif-
ficult tasks such as ImageNet can be solved very efficiently
with networks containing only a few layers, for example by
AlexNet (eight layers).

Finally, the vector-matrix multiplication can be replaced
by a convolution operation [37,38]. This is particularly
relevant for image recognition tasks, where convolutional
layers play a very useful role [89], or in general in tasks
that are characterized by translational invariance, either in
space or in time.

IV. IMPLEMENTATION OF BINARIZED
NEURONS

We propose two methods of implementation of XOR
gates in a microcavity system in the case when input pulses
are quasiresonant with the frequency of the microcavity.
Resonant excitation is better suited to energy-efficient pro-
cessing than the nonresonant excitation method used in the
recent experiment [31], as in the latter case input pulses do
not create exciton polaritons directly. Instead, high-energy
excitations in the so-called reservoir are created, and only
a fraction of them are converted into polaritons. More-
over, with the resonant excitation method, the frequency
of the input and the output are equal, which facilitates real-
ization of multilayer networks. However, spectral filtering
used in Ref. [31] cannot be directly used to obtain a neg-
ative response in the case of resonant excitation, as the
frequency of photons is fixed.

The first method is based on cross-phase modulation
and the use of interferometers. We assume that “0” is
encoded with the absence of a pulse or a low-intensity
pulse, and “1” with a high-intensity pulse. Before enter-
ing the microcavity, each of the input pulses is split into
two equal copies, see Fig. 5. One of the two copies is sent
around the microcavity, while the other copy is incident on
the surface of the microcavity. The second input pulse is
split and directed in the same way. The copies of the two
input pulses meet at the microcavity, where they interact
through polariton-polariton scattering. This induces both
self-phase modulation, which is independent of the other
pulse, and cross-phase modulation, which is dependent
on the intensity of the other pulse. The phase acquired
by cross-phase modulation is proportional to the inter-
action energy between polaritons in the two pulses, i.e.,
each pulse i = 1, 2 acquires the phase δφi ≈ gXPM〈n3−i〉τ ,
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Microcavity
I1

I2

Out

δφ = gnτXPM

FIG. 5. Scheme of a possible XOR gate implementation. The
principle of operation is based on cross-phase modulation (XPM)
of two pulses inside the microcavity and interferometry. With
appropriate tuning of optical path lengths, interference of cavity
emission with copies of input pulses results in intensity minimum
for the “11” input configuration.

where 〈n3−i〉 is the average density of polaritons in the
other pulse during the time of interaction, which is given
by τ . As the two pulses are incident at different angles,
they separate at the exit from the microcavity. Each of
the transmitted pulses is then combined with its copy that
did not go through the microcavity, which results in inter-
ference. Interference is destructive when the cross-phase
modulation phase δφ together with the phase difference
accumulated along optical paths is equal to π . By adjusting
the delay lines between the interfering pulses accordingly,
it is possible to obtain destructive interference for input
pulses that are in the “11” state.

As we are only interested in order-of-magnitude estima-
tions, we neglect the temporal dynamics of n and assume
that it is an average of density calculated over the duration
of the interaction τ . For optimal interaction, the tempo-
ral length of the pulse and the lifetime of polaritons in the
microcavity should be similar. This ensures that polaritons
can be effectively created in the microcavity and most of
them can be present and interact there at the same time. It
also ensures that the spectral density of the pulse matches
the width of the spectral resonance of the microcavity. This
requirement leads to the condition gn = �γ mentioned in
Sec. II.

The drawback of the above method is that it uses an
interferometric technique, which requires coherence of
light and precise adjustment of optical path lengths for
all nodes, which may be impractical. These shortcomings
are not present in the second method, which utilizes the
anisotropy of interactions of exciton polaritons [46]. In this
case, we assume that the two input pulses are mutually
incoherent. Interactions between polaritons with opposite
spin (or circular polarization) are very weak, while polari-
tons with the same spin interact strongly [96]. This allows
construction of a simple XOR gate using two 1/8-wave
plates, one placed in front and one behind the cavity, and
a polarizing filter. The principle of the method is shown
in Fig. 6. In this case, the two input pulses are assumed to
be linearly polarized in a well-defined direction (X ). At

(a)

(b)

FIG. 6. (a) Scheme of the XOR gate setup based on polariza-
tion rotations. (b) Details of rotations visualized on the Poincaré
sphere. The input pulses are assumed to be linearly polarized.
The first 1/8-wave plate rotates the polarization by the angle π/4
around the diagonal-antidiagonal polarization axis. The spin-
anisotropic polariton interaction results in the rotation of polar-
ization around the circular polarizations axis, which is intensity
dependent. This results in π/2 angle between polarizations of
the outputs from the microcavity in the input configurations
“10/01” (orange) and “00/11” (purple). The second 1/8-wave
plate rotates the polarization back to the equator (linear polar-
ization) plane. The polarizer at the output blocks the polarized
emission corresponding to the “00/11” configuration.

the entrance, they are combined into one. Before enter-
ing the microcavity, the combined pulse goes through a
1/8-wave plate, which rotates the polarization by 45◦ on
the Poincare sphere. Inside the microcavity, the polaritons
interact, which leads to nonlinear spin rotation around the
z axis on the Poincaré sphere, which is dependent on the
intensity of the input pulse. We assume that the intensity
of the pulse in the “10” or “01” input combination leads to
a rotation that is different by π with respect to the “00/11”
combination. As in Sec. II, this requires that the density
and time of interaction fulfill the condition gnτ ≈ 1. After
exiting the cavity, the polarization is rotated again by 45◦
using a 1/8-wave plate back to the equator plane, which
results in linear polarization of pulses, orthogonal in the
case of “01/10” and “00/11” polarizations. The pulse now
passes through the polarizer, which blocks the light cor-
responding to the “00/11” polarization, which results in
an XOR gate output. A similar concept was proposed to
realize a spin transistor [97], where spin rotation due to
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the polariton energy splitting followed by interference was
used.

V. MICROCAVITY TRANSPARENCY

Efficient operation of the proposed neural network
requires low energy losses at optical elements. On the other
hand, to enhance polariton-polariton interactions, micro-
cavities with very high quality factor are required. The use
of high-reflectivity mirrors in such cavities may seem to
contradict the assumed high transmission coefficients as in
Table I. However, this is not the case, and in this section
we show that high-Q cavities can be characterized by high
transmission rates at resonance.

Consider transmission of a light pulse through a dielec-
tric microcavity structure depicted in Fig. 7, where mirrors
consist of alternating layers of materials with refractive
indices n1 and n2, and the cavity medium has the index
nc. The coefficients of transmission and reflection are con-
veniently calculated using the transfer matrix formalism
[46]. At the center of the stop band we assume nj dj =
λ/4, where λ is the light wavelength in vacuum, dj is the
thickness of the mirror layer j , and the transfer matrix is

Tj =
(

0 i/nj
inj 0

)
. (4)

Two layers of material with refractive indices n1 and
n2 stacked next to each other correspond to the transfer
matrix, which is the product of T2 and T1

T12 =
(−n1/n2 0

0 −n2/n1

)
. (5)

Perfect transmission can be achieved when the complete
transfer matrix of the microcavity is proportional to the
identity matrix, cf. Fig. 7

Tmc = TN
12TcTN

21 ∼
(

1 0
0 1

)
, (6)

where N is the number of dielectric layer pairs on each
side. The above condition is fulfilled when the width of the
cavity layer is such that ncdc = λ/2.

The bottom panel of Fig. 7 shows the transmission spec-
trum of a microcavity composed of 25 pairs of layers
on each side of the microcavity, and fulfills the above
condition. Despite the high-Q factor of the cavity and
high reflectivity of the mirrors, almost perfect transmis-
sion occurs at the resonant frequency. Similarly, a polariton
cavity containing quantum-well excitons can be designed
to exhibit such a high transmission at resonance.

In practice, effects such as cavity imperfections, absorp-
tion, and nonradiative exciton decay will decrease the peak
transmission rate. Currently, polariton cavities can reach
transmission coefficients at the level of a few tens of
percent.

(a)

(b)

FIG. 7. (a) Example of a microcavity considered in the text. (b)
Solid line shows numerically calculated transmission spectrum
of a microcavity with mirrors composed of 25 pairs of layers each
with refractive indices n1 = 3 and n2 = 3.5 and the cavity with
refractive index nc = 3. Widths of the mirror layers are λ/4ni,
where λ is the central wavelength, and the width of the cavity is
λ/2nc. The dashed line shows the normalized spectrum of a laser
pulse with 50-ps temporal FWHM.

VI. NEURAL NETWORKS VERSUS UNIVERSAL
COMPUTING

We would like to point out several advantages of our
neural network design with respect to the more conven-
tional universal digital logic. Miller [98] summarized the
difficulties in using optical components for information
processing and pointed out conditions that have to be ful-
filled by a reasonable candidate for digital logic. However,
some of these conditions, including logic level restora-
tion condition, or “cleaning up” the signal, and the fan-out
condition are only necessary in the implementations that
follow the architecture of conventional computers. In par-
ticular, they are not necessary in the case of single hidden-
layer networks implemented in hardware. They are also
not absolutely necessary for deep feed-forward networks,
if optical signals are not redirected recurrently.

Nevertheless, in our system some of the conditions
of Ref. [98] are fulfilled: (a) critical biasing is not an
issue since the input-output operating point is not thresh-
oldlike; (b) input-output isolation can be achieved by a
simple method of directing the input pulses in free space
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at an angle with respect to optical surfaces, which results
in reflected pulses propagating along different trajectories
than the input pulses; (c) the condition of cascadability can
be fulfilled in the case of resonant excitation, when the fre-
quency of the output is the same as the input, provided that
some method of optical signal restoration or amplification
is implemented [99]; (d) while the logic level is dependent
on loss in our system, losses can be minimized as described
in Sec. V, and are proportional in each layer-to-layer con-
nection, which enables definition of signal amplitudes for
logic levels accordingly in each layer. At the same time,
it is possible to correct for the difference in loss in dif-
ferent optical paths by adjusting the corresponding optical
weights.

The use of a feed-forward neural network architecture
instead of universal digital computing results in another
useful aspect of the system, which is the absence of sep-
arate memory units. Currently, there is no reliable imple-
mentation of optical memory that could be used to imple-
ment a traditional computing architecture with polaritons.
Even if such technology existed, it would be required
to store and read information with ultrashort, ultralow
energy pulses to comply with the energy efficiency of
the entire system, which may be difficult to realize in
practice.

VII. QUANTUM LIMIT OF ENERGY EFFICIENCY

Since our device is based on classical physics, it should
operate well above the quantum limit to avoid quantum
noise. It is interesting to compare the potential energy effi-
ciency of our system to the single-photon limit, since the
fundamental energy efficiency bound is imposed, as in
the case of electronics, by quantum effects. The quantum
limit corresponds to a single photon per bit of information
or two photons per XOR gate. This leads to the estima-
tion of 1018 SOP s−1 W−1, as depicted in Fig. 3. The
onset of the quantum limit has been already observed in
tightly confined exciton-polariton microcavities [77,100].
We would like to emphasize that even if XOR nodes oper-
ated close to the quantum limit, few-photon emitters or
detectors would not be needed. The “quantum limit” in
the sense considered here applies to the operation of net-
work nodes in the hidden layer. Since there are no separate
detectors or emitters in these nodes, we do not need to
be concerned with the detection of these weak signals. As
already noted, output pulses arriving at the detectors in the
final layer can have intensities orders of magnitude higher
than the pulses that perform individual operations in the
hidden-layer nodes.

VIII. DISCUSSION

In this work we analyze the potential energy efficiency
of all-optical exciton-polariton-based systems for informa-
tion processing and propose a design of a simple neural

network for data classification. The advantage of perfor-
mance density and energy efficiency is achieved in the
inference, while the training stage is assumed to be per-
formed in software. The software model of a neural net-
work resulting from training can be implemented in optical
hardware by setting the appropriate optical weights. In this
sense, the proposed system is an example of an optical
neural network accelerator [8,90,91], where a previously
trained software model is implemented in hardware to
increase the performance of inference. Such systems are
best suited to machine-learning tasks where analysis of
a large number of samples is required, while retraining
or replacement of the model is not necessary or per-
formed infrequently. Such tasks include image, speech and
video recognition, natural language processing, automatic
detection, and control systems.

A practical system is required to operate at room
temperature. While the majority of laboratory experi-
ments with exciton polaritons are performed at cryo-
genic environments, there are already many experiments
with room-temperature exciton-polariton systems, includ-
ing inorganic [72,76] and organic [101–103] semicon-
ductors, two-dimensional materials [104] and perovskites
[73,75]. These materials are typically characterized by a
more prominent sample disorder, but if scattering on dis-
order is not strong enough to make the signal in the output
too weak, it can be part of the internal losses that do not
alter the efficiency of the operation. On the other hand, the
variation of node response due to disorder and variability
from one sample to another can be corrected for by appro-
priately adjusting optical weights at the input and output
layers. At the same time, we expect that heating will be
a negligible effect due to the low optical powers required.
Effects of heating are not typically observable in exper-
iments with polaritons, except for the highest pumping
rates.

The possible sources of optical losses are expected to
be associated with imperfection of cavity mirrors and irre-
versible (polariton unrelated) absorption of photons in the
sample. The technology of microcavity fabrication is suf-
ficiently advanced to produce very clean mirrors, which
results in extremely high optical mode quality factors. Irre-
versible absorption may result in sample heating, however
this effect is expected to be negligible at low optical pulse
energies. The creation of a long-lived exciton reservoir by
resonant laser pulses is also possible [105], but this effect
becomes less relevant for ultrashort pulses. Nevertheless,
we accounted for the exciton reservoir lifetime in our esti-
mation of maximum possible data rate in Sec. III E. The
use of picosecond pulse laser sources is required, which
contributes to the overall size of the system. The possi-
ble alternative to bulky ultrashort pulse lasers is the use
of compact vertical-cavity surface-emitting lasers together
with ultrafast optical modulators to shape picosecond input
pulses [106].
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Soljačić, C. Denz, D. A. Miller, and D. Psaltis, Inference
in artificial intelligence with deep optics and photonics,
Nature 588, 39 (2020).

[12] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. Pernice, H.
Bhaskaran, C. D. Wright, and P. R. Prucnal, Photonics for
artificial intelligence and neuromorphic computing, Nat.
Photonics 15, 102 (2021).

[13] A. N. Tait, T. Ferreira De Lima, M. A. Nahmias, H. B.
Miller, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, Silicon

Photonic Modulator Neuron, Phys. Rev. Appl. 11, 064043
(2019).

[14] R. Amin, J. George, S. Sun, T. Ferreira de Lima, A. N.
Tait, J. Khurgin, M. Miscuglio, B. J. Shastri, P. R. Prucnal,
and T. El-Ghazawi, et al., ITO-based electro-absorption
modulator for photonic neural activation function, APL
Mater. 7, 081112 (2019).

[15] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal,
Broadcast and weight: An integrated network for scalable
photonic spike processing, J. Lightwave Technol. 32, 3427
(2014).

[16] M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L.
Bigot, and A. Levenson, Excitability and self-pulsing in a
photonic crystal nanocavity, Phys. Rev. A 85, 031803(R)
(2012).

[17] J. W. Goodman, A. Dias, and L. Woody, Fully paral-
lel, high-Speed incoherent optical method for performing
discrete Fourier transforms, Opt. Lett. 2, 1 (1978).

[18] D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, Holography in
artificial neural networks, Nature 343, 325 (1990).

[19] N. H. Farhat, D. Psaltis, A. Prata, and E. Paek, Opti-
cal implementation of the Hopfield model, Appl. Opt. 24,
1469 (1985).

[20] T. Lu, S. Wu, X. Xu, and T. Francis, Two-dimensional pro-
grammable optical neural network, Appl. Opt. 28, 4908
(1989).

[21] D. Psaltis and N. Farhat, Optical information processing
based on an associative-memory model of neural nets with
thresholding and feedback, Opt. Lett. 10, 98 (1985).

[22] D. Psaltis, D. Brady, and K. Wagner, Adaptive optical net-
works using photorefractive crystals, Appl. Opt. 27, 1752
(1988).

[23] A. N. Tait, T. Ferreira De Lima, E. Zhou, A. X. Wu, M. A.
Nahmias, B. J. Shastri, and P. R. Prucnal, Neuromorphic
photonic networks using silicon photonic weight banks,
Sci. Rep. 7, 1 (2017).

[24] T. W. Hughes, I. A. Williamson, M. Minkov, and S. Fan,
Wave physics as an analog recurrent neural network, Sci.
Adv. 5, eaay6946 (2019).

[25] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran,
and W. H. P. Pernice, All-optical spiking neurosynaptic
networks with self-learning capabilities, Nature 569, 208
(2019).

[26] B. Shi, N. Calabretta, and R. Stabile, Deep neural network
through an InP SOA-based photonic integrated cross-
connect, IEEE J. Sel. Top. Quantum Electron. 26, 1
(2019).

[27] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen,
G.-B. Jo, J. Liu, and S. Du, All-optical neural net-
work with nonlinear activation functions, Optica 6, 1132
(2019).

[28] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers,
G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre,
and P. Bienstman, Experimental demonstration of reser-
voir computing on a silicon photonics chip, Nat. Commun.
5, 3541 (2014).

[29] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot,
L. Larger, and D. Brunner, Reinforcement learning in a
large-scale photonic recurrent neural network, Optica 5,
756 (2018).

024045-13

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.3390/challe6010117
https://doi.org/10.1609/aaai.v34i09.7123
http://arxiv.org/abs/arXiv:1605.07678
https://doi.org/10.1038/530144a
https://doi.org/10.1063/1.5108912
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1038/s41586-020-2764-0
https://doi.org/10.1038/s41586-020-2973-6
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1103/PhysRevApplied.11.064043
https://doi.org/10.1063/1.5109039
https://doi.org/10.1109/JLT.2014.2345652
https://doi.org/10.1103/PhysRevA.85.031803
https://doi.org/10.1364/OL.2.000001
https://doi.org/10.1038/343325a0
https://doi.org/10.1364/AO.24.001469
https://doi.org/10.1364/AO.28.004908
https://doi.org/10.1364/OL.10.000098
https://doi.org/10.1364/AO.27.001752
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1126/sciadv.aay6946
https://doi.org/10.1038/s41586-019-1157-8
https://doi.org/10.1109/JSTQE.2019.2945548
https://doi.org/10.1364/OPTICA.6.001132
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1364/OPTICA.5.000756


M. MATUSZEWSKI et al. PHYS. REV. APPLIED 16, 024045 (2021)

[30] D. Ballarini, A. Gianfrate, R. Panico, A. Opala, S. Ghosh,
L. Dominici, V. Ardizzone, M. De Giorgi, G. Lerario, G.
Gigli, T. C. H. Liew, M. Matuszewski, and D. Sanvitto,
Polaritonic neuromorphic computing outperforms linear
classifiers, Nano Lett. 20, 3506 (2020).

[31] R. Mirek, A. Opala, P. Comaron, M. Furman, M. Król,
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